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A New Technique for the Quasi-TEM Analysis of

Conductor-Backed Coplanar Waveguide Structures
Kwok K. M. Cheng, Member, IEEE, and Jeremy K. A. Everard, Member, IEEE

Abstract— Numerically efficient and accurate formulae based

on the spectral domain method for the analysis of conductor-

backed coplanar waveguide structures are presented. Quasi-

TEM parameters are obtained for these waveguide structures

by using piecewise linear functions to approximate the potential
distribution at the air-dielectric interface. Techniques such as

nonuniform dkcretization and bound estimation are described
which demonstrate shorter computational times. Results ou the

characteristic impedance calculation of standard coplanar wave-

gnide are given to demonstrate the numerical accuracy and
efficiency of the method presented here.

I. INTRODUCTION

D UE to the increasing popularity of coplanar waveguides

[1] for the design of hybrid and monolithic microwave

integrated circuits, the need for accurate characterization of the

structures has increased. The solutions should take into account

the effects of environmental constraints, such as shielding,

conductor backing, line-to-line coupling, and coupled lines.

Conductor backing is often introduced to improve both the

mechanical strength (GRAs substrate is typically thin and

fragile) and heat dissipation of the guide. Among these ad-

vantages, conductor backed coplanar waveguide (CBCPW)

also allows easy implementation of mixed coplanar/microstrip

circuits. There are also certain potential problems such as

leakage of power into surface waves, that are introduced by

the use of conductor backing [2]. Many papers have been

devoted to the analysis of CBCPW based on the quasi-TEM

approximation. Although it has been pointed out that the quasi-

TEM assumption is valid only at zero frequency, the dispersion

characteristics presented in [3] suggests that 1-percent accu-

racy in the effective dielectric constant can be maintained

with this assumption up to 20 GHz for dimensionally small

structures. Several quasi-static approaches have been reported,

including conforrnal mapping [4], finite difference [5] and

spectral domain methods [6] – [9]. In this paper, a numerically

efficient and accurate technique for evaluating the quasi-TEM

parameters of CBCPW structures is presented, which is based

on the spectral domain method. This technique uses the same

theory as presented by Sawicki and Sachse [8], the difference

being in the choice of expansion and testing functions. The

potential distribution across the conductor surfaces of the
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waveguide is modeled by a set of piecewise linear functions,

that allows closed-form analytical expressions to be derived.

The proposed method is equivalent to a variational method

which gives the upper bound on capacitance and hence a lower

bound on the characteristic impedance. Techniques to improve

the computational efficiency of these formulae including the

nonuniform discretization and bound estimation schemes are

described.

II. METHOD OF ANALYSIS

The cross-sectional view of the conductor-backed CPW

configuration under analysis is shown in Fig. 1. If the quasi-

TEM approximation is employed, our problem reduces to

solving Laplace’s equation in the space plane subject to

the appropriate boundary conditions. In the spectral domain,

Laplace’s equation can be written as [10}

G-l(rI)(f(a) = p(a) (la)

G-l(a) = SO(C1 + E2)Q

{

cc

~ + ~ ~ ~-2nt.

n=l

(lb)

where

lc=o (Open CBCPW)

k = ~ (Shielded CBCPW)
(lC)

r#(Q), p(a) and G(a) are the transform of the potential

distribution, charge density distribution, and the static Green’s

functions in the Fourier domain, respectively. These quantities

are evaluated at the air-dielectric interface, where the, ground

planes are assumed to be infinitely wide. AIl metallic strips

are assumed to be infinitely thin and perfectly conducting.

In the spectral domain methods reported [6]–[9], the un-

known potential distribution is usually expressed in terms of

appropriate basis functions which incorporate the edge effect.

High numerical accuracy has been demonstrated employing

Bessel functions and Chebyshev polynomials as the basis

functions. The integrals in the resulting equations thus obtained

are usually evaluated by numerical integration leading to
long CPU time. It is therefore very useful if a closed-form

expression can be found for these integrals to gain better nu-

merical accuracy and efficiency. Consider the single coplanar

waveguide structure shown in Fig. 1, a possible solution is to
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Fig. 1. Cross-sectional view of (1) open CBCPW, (b) shielded CBCPW,

(c) Parallel lines in CBCPW, and (d) Coupled lines in CBCPW.

approximate the potential distribution ~($) at the air-dielectric

interface by a set of piecewise linear functions (Fig. 2):

rj(z) = f K,q5=t,a%_,(z) (2a)
i=l

0=(() <(1< . ..<[N–I<[N=l

4W(Z) = 1 (0< x < b)

(2b)

.— ~ (b<z<a)

=0 (a <x) (2C)

where K; are the unknown coefficients to be determined,

and <i are predefine constants depending on the method of

discretization. If the slot is divided uniformly, the value of

<i is equal to l/iV. The number of sections needed could

become rather large if a highly accurate solution is desired.

Fortunately, by adopting a non uniform discretization scheme,

the numerical accuracy of the solution can be improved

without the need to increase the number of basis functions.

An expression for <i which has been found very useful for

this purpose is shown below,

()(,=l– COS &7r . (3)

The principle behind this formula is that smaller sections

are used over the region where the potential function is

changing rapidly. The values of K~ can now be obtained by

applying Galerkin’s procedure [8] to (l), and together with the

expression for the Fourier transform of (2c), given by,

&b(@) = z
cos(ba) – cos(aa)

(a - b)a’ “
(4)

After some mathematical manipulations, the following equa-

tion is obtained:

~i= T B (5a)
CO(E1+ &z)

where ~ = [Kl K2 . . .KN]T and ~ = [11... l]T. The total

electric charge per unit length of the center conductor has been

assumed equal to 1 C/m. The element of matrix ~, denoted

by A,,j (z, j = 1,2,...,N), is then defined by,

“ 4L,,a,-,(cY)da . (5b)

Closed-form analytical solutions for the above expression have

been derived and the resulting equation is shown below,

I. (c+ b)+In (a+d)-~n (a+ b)–I. (c+d.)+

Fn(a, b, c, d) =
In(c–b)+I. (a–d)–In(a–b)–In (c–d)

(a-c) (b-d)

L(P) = ${(1–02) ln(l+ ,62)

- 4~ arctan(~)}

where

~=;.

(6a)

(6b)

(6c)
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Flg.2. Piecewise linear approximation of potential distribution at the

air-dielectric interface of a single CBCPW transmission line.

The proper choice of basis function clearly eliminates the

need for tedious numerical integration to compute the elements

of ~. In order to keep the computational time and accuracy

within reasonable bounds, it is necessary to accelerate the

convergence of the infinite summations in (6a). It can be

seen that the value of the sums are bounded, in the following

relation:

‘j’ Fn(a, b, c, d) + ~m Fn(a,b, c,d) da
m=1 M

m

n=l

M–1

~ Fn(a,b,c,d)

+ r Fn(a, b, c, d) dn
M

(7)

where the integrals in the upper and lower limits are evaluated

as

/“
J(c+b)+J(a+d)–.7 (a+b)-J(c+d)

Fm(a, b, c, d) dn =
.7(c-b)+.7(a-d) -J(a-b)-J(c-d)

(a - c)(b - d)
(8a)

M

{
J(p) = $ (3LJ2– 1) ln(l + U2) + 6W arctan(u)

() }
+ 2U3 arctan ~ — lrw3 (8b)

w

where

P(.JZ-.
M

Note that the upper and lower bounds may be made to

approach the “true” value of the infinite summation simply by

increasing AZ. A formula which has been found very useful in

approximating this “true” value is given below,

~ F.(a,b,c,d) % ~F.(a,b,c.,d)

~ FM(a, b, c, d)
r

2
Pm

+ 1 Fn(a, b, C,d) drz . (9)
M

Once the unknown coefficients are obtained, the characteristic

capacitance C and impedance Z. of the waveguide can then

be determined from the expressions:

()
–1

C= ~Ki
i=l

(lOa)

Z. = Zadc.
-F’

(lOb)

Note that C. and Z. are the characteristic capacitance and

impedance, respectively, of the same guide structure when

all dielectric materials are replaced by a vacuum. These

parameters may be calculated by conformal mapping theory.

Although the above analysis is performed on a single copla-

nar waveguide structure, the same procedure can easily be

extended to other configurations such as coupled lines, by

employing an appropriate set of piecewise linear functions to

model the potential distribution at the air-dielectric interface.

III. NUMERICAL RESULTSAND DISCUSSIONS

A computer program based on the formulae presented in

this paper, has been developed to analyze the open CBCPW

configuration shown in Fig. 1. In our first example, numerical

results are generated to examine the accuracy of the solution

using different discretization methods. Fig. 3 shows the plot of

the characteristic impedance values as a function of the ratio

S/h (lV/h = 1, ez = 10, cl = 1). Based on the uniform

discretization principle, curves are produced for N = 1,3, 10

and 20. For the purposes of comparison, values obtained by the

conformal mapping theory and the non uniform discretization

method (N = 4) are also included in the diagram. It should

be noted that the mapping theory produces quite large errors

as the slot width is increased. Upon examining curves U – 10,

U – 20, and N – 4, it is quite easy to see that the number of

basis functions needed is reduced by a factor of between 4 and

5, using the nonuniform discretization formula given in (3).

This is in fact a significant savings in terms of computational

time and storage requirement since both of these parameters

are roughly proportional to iV2.

In Fig. 4, the convergence rates for the evaluation of char-

acteristic impedance versus the number of terms taken by the

direct sum and bound estimation methods are shown. In each

case the “relative error” is calculated by comparing the result
to a series evaluation which has been computed to machine

precision. Numerical experiments reveal that the method of

direct sum requires over 200 terms to achieve O.1% inaccuracy.

However, this number is reduced to 3 for the same precision,

by using the formula in (9). This indicates an improvement

factor of almost a 100 in numerical efficiency.
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Fig. 3. Plot of characteristic impedance values versus the ratio S/h for the
open CBCPW structure shown in Fig. 1.
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Fig. 4. Plot of relative error in characteristic impedance evaluation versus

number of terms taken using direct and bound estimation methods for the
open CBCPW structure shown in Fig. 1.

Finally, to illustrate the accuracy of this method, compari-

sons with respect to the ratio &1A of the open CBCPW

configuration have been made and shown in Fig. 5. The last

column of Fig. 5 shows the computed values (low frequency)

reported by Shih and Itoh, which were obtained by a rigorous

spectral domain approach. Upon examining the two set of data,

it can be concluded that the accuracy of the formulas presented

here is better than 0.5 of a percent. It should also be pointed

out here that the numerical computations have been carried

out on a Vax Cluster 8700 machine, and the computing time

for each value is about 17 ms, with ~ = 4 and M = 3.

I h( pm) I kg/A this methodl Lg/L Ref. [3] I

50 0.319 0319

100 0339 0.339

150 0.352 0,351

300 0,368 0,368

500 0374 0.373

W= 200pm ,S= 100pm , &r =13

Fig. 5. Comparisons of computed &/~ values (1OW frequencies ) with a

rigorous spectral domain method for the open CBCPW structure shown in
Fig. 1.

IV. CONCLUSION

A numerically efficient method for obtaining the quasi-

TEM parameters of conductor-backed coplanar waveguide

structures has been proposed. It can be seen that this approach

is both easy to implement and rapidly convergent, thus making

it an excellent choice for use in microwave CAD tools.

The numerical results presented agree well with previously

published data which were based on a full-wave analysis

approach. The method of analysis described here may also

be applied to the modeling of multiconductor systems.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

T. Itoh, “Overview of
Microwave Theorv Tech..

REFERENCES

quasi-planar transmission lines,” IEEE Trans.
vol. MIT-37, up. 275 – 280, Feb. 1989.

H. Shigesawa and M. Tsuji, “Conducto;~backed slot line and coplanar

waveguide: dangers and full-wave analysis,” in Proc. IEEE MT’T-S Int.
Microwave Syrnp. Dig., 1988, p. 199–202.
Y. C. Shih and T. Itoh, “Analysis of conductor-backed coplanar wave-
guide,” IEE Electronics Lett., vol. 18, pp. 538–540, June 1982.
G. Ghione and C. Naldi, “’Coplanar waveguides for MMIC applica-

tions: Effect of upper shielding, conductor backing, finite-extent ground
planes, and line-to-line coupling,” IEEE Trans. Mtcrowave Theory Tech.,

vol. MIT-35, pp. 260 – 267, Mar. 1987.
T. Hatsuda, “Computation of coplanar-type strip-line characteristics by

relaxation method and its application to microwave circuits,” IEEE Trans.
Microwave Theory Tech., vol. MTT-23, pp. 795–802, Oct. 1975.
F. Medina and M. Homo, “Determination of Green’s function matrix

for multiconductor and anisotropic multidielectric planar transmission
lines; A variational approach,” IEEE Trans. Microwave Theory Tech.,

vol. M’IT-33, pp. 933–940, Feb. 1985.
K. Araki and Y. Naito, “Upper bound calculations on capacitance of
microstrip line using variational method and spectral domain approach,”
IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 506–509, July

1978.
A. Sawicki and K. Sachse, lower and upper bound calculations on

the capacitance of multiconductor printed transmission line using the

spectral-domain approach and variational method,” IEEE Trans. Mi-
crowave Theory Tech., vol. MTT-34, pp. 236 – 243, Feb. 1986.
R. R. Boix and M. Homo, “Modal quasistatic parameters for coplanar

multiconductor structures in multilayered substrates with arbitrary trans-
verse dielectric anisotropy,” IEE Proc. pt. H, Microwaves, Antennas and
Propagation, vol. 136, no. 1, pp. 76–79, Feb. 1989.
R. Mittra and T. Itoh, “Charge and potential distributions in
shielded striplines,” IEEE Trans. Microwave Theory Tech., vol. MTT-18,

pp. 149–156, Mar. 1970.

Kwok K. M. Cheng (M’91), for a photograph and biography, see this issue,
p. 1573.

Jeremy K. A. EverarrJ, (M’91), for a photograph and biography, see this
issue, p. 1573.


