IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 9, SEPTEMBER 1993

1589

A New Technique for the Quasi-TEM Analysis of
Conductor-Backed Coplanar Waveguide Structures

Kwok K.M. Cheng, Member, IEEE, and Jeremy K. A. Everard, Member, IEEE

Abstract— Numerically efficient and accurate formulae based
on the spectral domain method for the analysis of conductor-
backed coplanar waveguide structures are presented. Quasi-
TEM parameters are obtained for these waveguide structures
by using piecewise linear functions to approximate the potential
distribution at the air-dielectric interface. Techniques such as
nonuniform discretization and bound estimation are described
which demonstrate shorter computational times. Results on the
characteristic impedance calculation of standard coplanar wave-
guide are given to demonstrate the numerical accuracy and
efficiency of the method presented here.

I. INTRODUCTION

UE to the increasing popularity of coplanar waveguides

[1] for the design of hybrid and monolithic microwave
integrated circuits, the need for accurate characterization of the
structures has increased. The solutions should take into account
the effects of environmental constraints, such as shielding,
conductor backing, line-to-line coupling, and coupled lines.
Conductor backing is often introduced to improve both the
mechanical strength (GaAs substrate is typically thin and
fragile) and heat dissipation of the guide. Among these ad-
vantages, conductor backed coplanar waveguide (CBCPW)
also allows easy implementation of mixed coplanar/microstrip
circuits. There are also certain potential problems such as
leakage of power into surface waves, that are introduced by
the use of conductor backing [2]. Many papers have been
devoted to the analysis of CBCPW based on the quasi-TEM
approximation. Although it has been pointed out that the quasi-
TEM assumption is valid only at zero frequency, the dispersion
characteristics presented in [3] suggests that 1-percent accu-
racy in the effective dielectric constant can be maintained
with this assumption up to 20 GHz for dimensionally smali
structures. Several quasi-static approaches have been reported,
including conformal mapping [4], finite difference [5] and
spectral domain methods {6]—[9]. In this paper, a numerically
efficient and accurate technique for evaluating the quasi-TEM
parameters of CBCPW structures is presented, which is based
on the spectral domain method. This technique uses the same
theory as presented by Sawicki and Sachse [8], the difference
being in the choice of expansion and testing functions. The
potential distribution across the conductor surfaces of the

Manuscript received September 20, 1992. This work was supported by the
U.K. Science and Engineering Research Council.

K.K.M. Cheng is with the Department of Electronic and Electrical En-
gineering, King’s College London, University of London, Strand London,
England WC2R 2LS.

J.K.A. Everard is with the Department of Electronics, University of York,

Heslington, York. Y01-5DD, England.
IEEE Log Number 9211854.

waveguide is modeled by a set of piecewise linear functions,
that allows closed-form analytical expressions to be derived.
The proposed method is equivalent to a variational method
which gives the upper bound on capacitance and hence a lower
bound on the characteristic impedance. Techniques to improve
the computational efficiency of these formulae including the
nonuniform discretization and bound estimation schemes are
described.

II. METHOD OF ANALYSIS

The cross-sectional view of the conductor-backed CPW
configuration under analysis is shown in Fig. 1. If the quasi-
TEM approximation is employed, our problem reduces to
solving Laplace’s equation in the space plane subject to
the appropriate boundary conditions. In the spectral domain,
Laplace’s equation can be written as [10}

G~ a)g(e) = p(a) (1a)

G YHa) = eoler + e2)a

. {1 +k26—2nta
n=1
2e9 o —2nho
+
€1+ €2 nz=:1 ¢ }
(1b)
where
k=0 (Open CBCPW) 1

k= 2L (Shielded CBCPW) (1e)

¢(a), p(a) and G(a) are the transform of the potential
distribution, charge density distribution, and the static Green’s
functions in the Fourier domain, respectively. These quantities
are evaluated at the air-dielectric interface, where the ground
planes are assumed to be infinitely wide. All metallic strips
are assumed to be infinitely thin and perfectly conducting.

In the spectral domain methods reported [6]—[9], the un-
known potential distribution is usually expressed in terms of
appropriate basis functions which incorporate the edge effect.
High numerical accuracy has been demonstrated employing
Bessel functions and Chebyshev polynomials as the basis
functions. The integrals in the resulting equations thus obtained
are usually evaluated by numerical integration leading to
long CPU time. It is therefore very useful if a closed-form
expression can be found for these integrals to gain better nu-
merical accuracy and efficiency. Consider the single coplanar
waveguide structure shown in Fig. 1, a possible solution is to
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Fig. 1. Cross-sectional view of (1) open CBCPW, (b) shielded CBCPW,
(c) Parallel lines in CBCPW, and (d) Coupled lines in CBCPW.

approximate the potential distribution ¢(z) at the air-dielectric
interface by a set of piecewise linear functions (Fig. 2):

N
$(@) =) Kida, o, (@) (2a)
a; = —Vg- +GS
0=(¢o<G < - <(va1<{nv=1 (2b)
dap(z)=1 (0<z<b)
=2 :z (b<z<a)
=0 (a<z) (20)

where K; are the unknown coefficients to be determined,
and (; are predefined constants depending on the method of
discretization. If the slot is divided uniformly, the value of
¢; is equal to 1/N. The number of sections needed could
become rather large if a highly accurate solution is desired.
Fortunately, by adopting a non uniform discretization scheme,
the numerical accuracy of the solution can be improved
without the need to increase the number of basis functions.
An expression for ¢; which has been found very useful for
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this purpose is shown below,

(=1~ cos(%w) .

The principle behind this formula is that smaller sections
are used over the region where the potential function is
changing rapidly. The values of K; can now be obtained by
applying Galerkin’s procedure [8] to (1), and together with the
expression for the Fourier transform of (2c), given by,

)

cos{ba) — cos(aq)

(a — b)a? “)

¢a,b(a) =2

After some mathematical manipulations, the following equa-
tion is obtained:
T

AK= ————B
eo(er +e2)

(52)

where K = [K1 K3+~ Ky]T and B = [11---1]T. The total
eleciric charge per unit length of the center conductor has been
assumed equal to 1 C/m. The element of matrix A, denoted
by A, ; (3,5 =1,2,---,N), is then defined by,

Aij = / QPa,,a,_1(¥)Ba, a,_, () do
0

st fe’s}
+k Z / ae” %, o (@)
n=1"0

: ('ZSG'J s@3—1 (a) da
262

—2nha
€1+52 Z/ ae ¢az»az 1( )
' ¢a37a1—1( )da *

Closed-form analytical solutions for the above expression have
been derived and the resulting equation is shown below,

(5b)

Ai,g = FO(aia Gj,Q5—-1, a’j—-l)

oo
Ay Ay Qi1 Gy—1
k F( g, Gt )
+ nzzl 2t° 2t° 2t 2t

262
€1+ &2
= a; a, ai_1 aj_1
SR (& & %1
T; (2h’2h’ 2 2h) (6a)
I, (c+b)+ I, (a+d)—I,(a+b)—1I,(ct+d)+
In(c=b)+I,(a—d)—I, (a=b)~1I, (c—d
b o) = e aeiotlend
(6b)
n? 2 2
L(p) = % { (1= %) In(1 + 5?)
— 44 a,rctan(ﬂ)} (6¢c)
where
- r
p=L.
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Fig. 2. Piecewise lincar approximation of potential distribution at the
air-dielectric interface of a single CBCPW transmission line.

The proper choice of basis function clearly eliminates the
need for tedious numerical integration to compute the elements
of A. In order to keep the computational time and accuracy
within reasonable bounds, it is necessary to accelerate the
convergence of the infinite summations in (6a). It can be
seen that the value of the sums are bounded, in the following
relation:

M-1 oo
> Fn(a,b,c,d)+/ Fo(a,b,c,d)da
n=1 M
<Y Fu(a,b,c,d) <

n=1

M-1

Z Fn(a7 b, c, d)

n=1

+/ E.(a,b,c,d)dn (7)
M

where the integrals in the upper and lower limits are evaluated
as

J(ct+b)+J(atd)—J(a+b)—J (c+d)

oan a.b.c.d)dn = J(c—b)+J(a—d)—JT(a—b)—J(c—d) 8a
J, Frabed -oG-da
M3
J(p) = - (3w? = 1) In(1 4+ w?) + 6w arctan(w)
3 1 3
+ 2w arctan(;) - W } (8b)
where
w=2
i

Note that the upper and lower bounds may be made to
approach the “true” value of the infinite summation simply by
increasing M. A formula which has been found very useful in
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approximating this “true” value is given below,

oS} M-1
> Fu(ab,c,d) » > Fu(a,b,c,d)
n=1 n=1

FM(a:bv C, d)

+ 2
+ / F.(a,b,c,d)dn. )
M

Once the unknown coefficients are obtained, the characteristic
capacitance C' and impedance Z, of the waveguide can then
be determined from the expressions:

/Ca
Zy = Z, ok

Note that C, and Z, are the characteristic capacitance and
impedance, respectively, of the same guide structure when
all dielectric materials are replaced by a vacuum. These
parameters may be calculated by conformal mapping theory.
Although the above analysis is performed on a single copla-
nar waveguide structure, the same procedure can easily be
extended to other configurations such as coupled lines, by
employing an appropriate set of piecewise linear functions to
model the potential distribution at the air-dielectric interface.

(10a)

(10b)

III. NUMERICAL RESULTS AND DISCUSSIONS

A computer program based on the formulae presented in
this paper, has been developed to analyze the open CBCPW
configuration shown in Fig. 1. In our first example, numerical
results are generated to examine the accuracy of the solution
using different discretization methods. Fig. 3 shows the plot of
the characteristic impedance values as a function of the ratio
S/h (W/h = 1, g2 = 10, &; = 1). Based on the uniform
discretization principle, curves are produced for N = 1, 3, 10
and 20. For the purposes of comparison, values obtained by the
conformal mapping theory and the non uniform discretization
method (N = 4) are also included in the diagram. It should
be noted that the mapping theory produces quite large errors
as the slot width is increased. Upon examining curves U — 10,
U — 20, and N — 4, it is quite easy to see that the number of
basis functions needed is reduced by a factor of between 4 and
5, using the nonuniform discretization formula given in (3).
This is in fact a significant savings in terms of computational
time and storage requirement since both of these parameters
are roughly proportional to N2,

In Fig. 4, the convergence rates for the evaluation of char-
acteristic impedance versus the number of terms taken by the
direct sum and bound estimation methods are shown. In each
case the “relative error” is calculated by comparing the result
to a series evaluation which has been computed to machine
precision. Numerical experiments reveal that the method of
direct sum requires over 200 terms to achieve 0.1% inaccuracy.
However, this number is reduced to 3 for the same precision,
by using the formula in (9). This indicates an improvement
factor of almost a 100 in numerical efficiency.
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Fig. 3. Plot of characteristic impedance values versus the ratio S/h for the
open CBCPW structure shown in Fig. 1.
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Fig. 4. Plot of relative error in characteristic impedance evaluation versus
number of terms taken using direct and bound estimation methods for the
open CBCPW structure shown in Fig. 1.

Finally, to illustrate the accuracy of this method, compari-
sons with respect to the ratio Ag/A of the open CBCPW
configuration have been made and shown in Fig. 5. The last
column of Fig. 5 shows the computed values (low frequency)
reported by Shih and Itoh, which were obtained by a rigorous
spectral domain approach. Upon examining the two set of data,
it can be concluded that the accuracy of the formulas presented
here is better than 0.5 of a percent. It should also be pointed
out here that the numerical computations have been carried
out on a Vax Cluster 8700 machine, and the computing time
for each value is about 17 ms, with N =4 and M = 3.
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h(um ) Ag/A this method} Ag/A Ref. (3]
50 0.319 0.319
100 0.339 0.339
150 0.352 0.351
300 0.368 0.368
500 0.374 0.373

W=200um , S=100pum , €r =13
Fig. 5. Comparisons of computed Ay/\ values (low frequencies ) with a
rigorous spectral domain method for the open CBCPW structure shown in

Fig. 1.

IV. CONCLUSION

A numerically efficient method for obtaining the quasi-
TEM parameters of conductor-backed coplanar waveguide
structures has been proposed. It can be seen that this approach
is both easy to implement and rapidly convergent, thus making
it an excellent choice for use in microwave CAD tools.
The numerical results presented agree well with previously
published data which were based on a full-wave analysis
approach. The method of analysis described here may also
be applied to the modeling of multiconductor systems.
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